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ABSTRACT

Selective Availability (SA) represents the dominant
error source for stand-alone users of GPS. Even for

DGPS, SA mandates the update rate required for a
desired level of accuracy in realtime applications. As
has been witnessed in the recent literature, the ability

to model this error source is crucial to the proper
evaluation of GPS-based systems. A variety of SA
models have been proposed to date; however, each has
its own shortcomings. Most of these models have been
based on limited data sets or data which have been

corrupted by additional error sources. This paper
presents a comprehensive treatment of the problem.
The phenomenon of SA is discussed and a technique is
presented whereby both clock and orbit components of
SA are identifiable. Extensive SA data sets collected

from Block II satellites are presented. System
Identification theory then is used to derive a robust

model of SA from the data. This theory alsoallows for
the statistical analysis of SA. The stationarity of SA
over time and across different satellites is analyzed and
its impact on the modeling problem is discussed.

INTRODUCTION

The intentional degradation of the GPS signal known
as Selective Availability (SA) is the single largest error
source for open loop (non-differential) users of GPS.
This degradation is accomplished through manipulation
of the broadcast ephemeris data and through dithering

of the satellite clock (carrier frequency). Manipulation
of the satellite ephemeris data results in erroneous
computation of satellite position. This is a long term,
non-periodic error trend over the duration of the
satellite pass. Dithering of the satellite clock results in
erroneous code-phase and carrier-phase measurements.
This error trend consists of random oscillations with

periods on the order of 5 to 10 minutes.

As the recent literature has shown, a software-centered

GPS signal model is essential for the bench testing and
evaluation of a variety of GPS-based systems IBar-
Sever, et al, 1990; Braasch, 1990-91; Felt, 1992; Lear,

et al, 1992]. A key element in this model is the
module for SA. Several SA models have been

presented over the past few years; however, each has
been derived based on limited data sets or data which

have been corrupted by other error sources. An
accurate SA-oniy model is needed. Ideally, this model

should be able to generate the typical kinds of SA
error traces observed on any satellite at any time.
Furthermore, since the two error sources behave quite
differently, independent characterization of the orbit

and clock components of SA is required. This paper
presents work performed to address these issues.

SA DISCUSSION

SA was formally implemented by the Department of
Defense on March 25, 1990 [Anon., 1990]. At that
time, however, SA had been on experimentally for
nearly one year. Various groups reported observing
SA-like errors soon after the launch of the first Block

II satellite, SVN 14, in February of 1989 ['Braasch,
1990-91; Kremer, et al, 1990].

These observations led to the development of the first
model of SA based on actual data [Braasch, 1990-91].
In subsequent years, other researchers developed
additional SA models [Chou, 199_, Lear, et al, 1992].
None of the investigations, however, were able to

answer some fundamental questions: l) Is SA the same
on all satellites? 2) For a given satellite, is SA a
stationary random process? That is, do the statistical

properties of the SA vary as a function of time? 3)
Quantitatively speaking, what is orbital SA?
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ORBIT ERROR ANALYSIS

Accurate modeling of SA requires consideration of
both the orbital and clock error components. Previous
SA investigations have focussed on the clock
component only without consideration of the orbital
component.

The ability to observe the orbital error component
relies on the data provided by various public and
private GPS tracking networks. These networks
employ a variety of GPS tracking stations which make
range measurements to the satellites. Since the

locations of the tracking stations are known, this
information can be coupled with the range
measurements to calculate the position of the satellites.

The result is the so called precise ephemeris or orbit

data. Since the precise orbits are calculated according
to where the satellites currently are located, they are
more accurate than the broadcast ephemeris data (even
without SA) which represents a prediction of where the
satellites will be in the future. This precise orbit data

is used in a variety of non-realtime GPS applications
which require the utmost of accuracy.

The precise orbit data are made available to the public
in a variety of formats and media. The data used in
this study were obtained from the National Geodetic
Survey-(NGS) tfir6ugh the Nav,s_r GPS Information

Center Bulletin Board and from the Scripps Institution
of Oceanography (University of California at San
Diego) through their own bulletin board service. The
various computer programs required to read the data
formats and perform the required interpolations were
provided by the NGS [Remondi, 1985; Remondi, 1989,

Remondi, 1991]. For verification, precise data were
obtained both from NGS and Scripps and compared.

During April of 1992 (days 104, 112, 113), broadcast
ephemeris data were collected from 4 Block I satellites
and 11 Block II satellites. Some months later, after the

precise ephemeris data had been posted, the precise
orbits were compared with the orbits calculated using
the broadcast ephemeris. Along-track, cross-track and
radial errors were calculated and plotted. Since orbit
predictions are never perfect, errors on the order of a
few meters were expected even in the absence of SA
[Ananda, et al, 1984; Bowen, et al, 1985]. Surprisingly,

the error plots for all satellites (Block I and Block II)
were on the order of a few meters. Figures 1 through
3 show an example of orbital errors computed for
satellite 19.
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Based on these limited data sets, it would seem that

the orbital component of SA has not been
implemented. It is possible that SA was turned off at
this time. However, at the very least, a method now

exists whereby the orbital component of SA can be
observed. Further data collection efforts are planned
to determine if this lack of orbital SA is a regular

phenomenon or not.

SA (CLOCK COMPONF2q'I) DATA
COLLECTION AND REDUCTION

Having performed the orbital error analysis, the next

phase in the study was to collect data for analysis of
the clock component of SA. As was noted by Lear, ¢t

al (1992), the clock component of SA is a smooth error
trace over time and therefore carrier-phase (integrated

doppler) data must be collected for the data reduction.
This was one of the greatest drawbacks of the models

presented in Braasch (1990-91). Since only
pseudorange data were available for that study, the
data reduction process left a combination of SA and
receiver noise. Since filtering could not be performed

without imposing assumptions on the underlying SA
waveform, it was decided that a model would be
derived for the combination of SA and receiver noise

[Braasch, 1990-91]. An additional problem Wiih that
study was the fact that the data were collected (and

hence the model operated) at a data rate of 116 Hz.
The need for an SA-only model operating at the

standard 1 Hz rate served as the original motivation for

this study.

During the first week of December (November 30 -
December 4), 1992, integrated doppler data were
collected at a known location from 10 Block II
satellites. The data were collected at Ohio University

using a Stanford Telecommunications, Inc. modified
Time Transfer System model TTS-502B under the

control of a personal computer. The term "modified"
refers to the fast-sequencing version of the receiver

produced by Stanford Telecommunications, Inc. For
the purposes of this study, the important aspect of the
modified receiver is its ability to make continuous

carrier-phase (integrated doppler) measurements with
fine resolution and low noise. The data rate was 1 Hz.

In order to extract the SA waveform, the following

steps were taken. First, the true ranges from the
satellite to the known antenna location were calculated

for the duration of the satellite pass. These were

subtracted from the integrated doppler measurements.
What remains are referred to as measurement residuals
and are a combination of SA, receiver clock drift,

atmospheric delay, multipath and a bias due to the

ambiguity in the integrated doppler measurements.

For environments in which the strength of the

multipath is less than the direct signal, the carrier-
phase multipath error is guaranteed to be less than 5
cm [Braasch, 1992]. Although it will not be proven
here, suffice it to say that the antenna environment
used in this study satisfies this criterion. Since a
rubidium standard was used as the time base for the

receiver, the receiver clock drift is extremely stable and

is typically modeled as a first order polynomial

[Kremer, et al, 1990]. However, since dual-frequency
measurements were not available, ionospheric delay
could not be removed. In addition, tropospheric delay

is also present. It should be recognized though, that
the delays due to the atmosphere are typically long
term trends. The result then, is the combination of

bias, clock drift and atmospheric delay can be removed

by fitting a second-order polynomial to the
measurement residuals and subtracting it out. If any

bias or long term drift component is present in SA, it
will be removed also [Braasch, 1990-91; Lear, et al,

1992]. If an extremely long term error component does
exist in the clock SA, it can only be observed if the

user clock is synchronized to GPS time [Braasch, 1990-

91]. It should also be noted that since the precise
ephemerides for the satellites were not available at the
time of this writing, broadcast ephemeris was used in

the computation of the true ranges. However, under
the assumption that the broadcast ephemeris is as
accurate as in our previous analysis, this error

component is virtually negligible. Even ff an orbital
SA component is present, it will tend to be removed

through the subtraction of the best-fitting second-order

polynomial.

The results of the data collection and reduction are

shown in figures 4 through 13. The SA error
amplitude varies from 40 to 70 meters and the
oscillations have periods on the order of 5 to 10
minutes. The variations in the data record length are

due to several factors including satellite availability,
truncation of records due to receiver glitches and more

importantly, truncation of records in order to achieve
stationarity. More detail on this last point will be

given in a later section.

SA MODEL IDENTIFICATION

Over the past few years, various models have been used
to simulate SA. The first SA model was not based on
actual SA data but was deduced from a sample

probability distribution curve [Matchett, 1985]. The
GPS Joint Program Office (JPO) generated SA

sampies and then computed the curve from these
samples. A sez_nd-order Gauss-Markov process was

postulated and the coefficients were adjusted until its
distribution curve matched the one provided by the
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JPO. The first models obtained from actual SA data
were time series models derived using System

Identification theory [Braasch, 1990-91]. Later, Chou
also implemented a second order Gauss-Markov

process but his was based upon actual SA data [Chou,
1990]. In their recent paper, Lear, et al (1992) present
several time series and analytical models also based

upon actual SA data.

For this study, System Identification theory was

employed to derive time series models in a manner
similar to that used in Braasch (1990-91). In general,

time series models are based upon the assumption that
the data of interest (SA in this case) can be modeled as
the output of a linear system (pole-zero filter) driven
by Gaussian white noise. Conceptually, derivation of
time series SA models can be thought of as a two-step

process. The first step is to send the SA data through
a filter and adjust the poles and zeros (or equivalently,
filter coefficients) such that the output is Gaussian
white noise with minimum variance (the output is
referred to as residuals). The second step is then to

compute the inverse of the filter determined in the first
step. Model identification is now complete.
Statistically equivalent SA data can then be generated
by driving the inverse filter with Gaussian white noise
(whose variance is equivalent to that of the residuals in
the first step). Kelly (1992) provides an excellent
overview of time series model identification and its

application to the problem of microwave landing

system (MLS) signal modeling.

Three decisions are inherent in the above procedure.
The first is the choice of model (filter) type. Three are

possible: 1) a pole-zero filter (giving rise to what is
known as an Autoregressive Moving Average or

ARMA model); 2) an all-pole filter (yielding an
Autoregressive or AR model); 3) an all-zero filter
(yielding a Moving Average or MA model). The
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second decision is the choice of model order. That is,

if an AR model is chosen, how many poles will be
used? The third decision is related to the first two and

involves determining if a given residual sequence is
white.

Since the primary goal in this study was to derive an

accurate SA-only model, an AR model type was
chosen. This stems from the fact that ARMA and MA

models tend to be noisy. In fact, Braasch (1990-91)
concluded that an ARMA model was the best model

type for the combination of SA and receiver noise. An

autoregressive model of order p (referred to as an

AR(p)) is defined as follows [Marple, 1987]:

y(n)., -_'_a(k)y(n-k) + e(n) (1)
/v,I

where y is the model output, n is the time index, a(k)

is the kth filter coefficient, and e is the input Oaussian
white n0'L_. Note that the SA models derived from

the data will operate at 1 Hz sf/tee-t_ey are-tied to the
data colle_tf0fi :fate.

Having made the decision to use an AR model type,
the rest of the process involved finding the optimum

model order and coefficients (pole locations). For a
given model order, many methods exist for optimizing
the coefficients [Kay, 1987; Ljung, 1987; Marple, 1987].
The one chosen in this study was the Modified
Covariance or Forward-Backward method. The second

name stems from the fact that the optimization criterion

is the minimization of forward and backward prediction
errors. As will be shown later, this method performs
quite well with SA data.

Several methods exist for model order selection. The

majority of these methods have been developed for
extremely short data records. The main issue is that

one wants to derive a model for the underlying
statistical process which gave rise to the data. When
model orders are selected which are too high (i.e.

approaching the number of data points in the sample),
the result is a "fit" of the sample data record rather

than the underlying statistical process. The model
order selection method used in this study is known as

the Principle of Parsimony. The simplest acceptable
model is the one chosen. An acceptable model is the

inverse of the filter which outputs white noise when
driven with SA. Note that if the model order is too

low, the residuals will not be white even though the
coefficients have been optimized.

The model identification, therefore, proceeds as

follows. For a given sample of SA data, the coefficient
is optimized for a first-order filter and the residuals are

5O

examined. If they are not white, then the coefficients

for a second-order filter are optimized and the

residuals are examined again. The process is repeated
until the model order and optimum coefficients are

found for which the residuals are white. This process
was performed for each of the SA data sets shown
earlier. Depending upon the data set, models of either
9 or 11 coefficients were derived.

The method for determining whiteness involved
examination of the autocorrelation function. An

example is given in figure 14 where the autocorrelation
function is plotted for the residuals from the SA data

of satellite 28. Ideally, the autocorrelation function of

white noise has a spike at lag 0 and is zero everywhere
else. However, that can be obtained only for infinite
length sequences. As a result, some minor ,sidelobes"

occur at lags 0iher than zero for whiie noise

sequences which are finite. The dotted lines in the
figure represent the 99% confidence intervals for the

sidelobes. AS can be seen in the plot, the sidelobes lie

inside the confidence intervals for the most part and
thus-the model is acceptable.

Further validation of the model can be performed by

generating some waveforms and comparing the power
spectral densities (PSD's) of the generated and

collected data. An example is shown in figures 15 and

16. Figure 15 shows the waveform generated by the
SA model which was derived from the SV 28 data.

Note that ff one compar.es the _-_v_e_rm to_ai of the
collected data (figure 13), they are not the same.

However, they are statistically equivalent. That is, the
periods and amplitudes of the generated data are the
same as for the collected data. This is better illustrated

in figure 16 where the PSD's of the two waveforms are
plotted. Although it is difficult to see, there are

actually two PSD's plotted. The solid line represents
the collected data and the dashed line represents the

generated waveform. PSD comparisons were
performed on all of the models derived from the data.
In each case the result was similar to that shown here.

A final step in model validation concerns the power in
the residuals. Recall that in step one of the model

derivation process, the goal was to find a filter which
output white noise (residuals) with minimum variance
when driven with SA. The need for minimum variance

is important from both a theoretical and practical

viewpoinL Theoretically, having residuals with
minimum variance means that the filter has been

optimized and embodies the structure (i.e. correlation
or information) of the SA. Kelly (1992) refers to this

as the filter "explaining" the data. However, from a
practical viewpoint, minimum variance is also required.
This is particularly true when trying to model random,

yet smooth, waveforms such as SA.
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Figures 17 and 18 illustrate the success of the AR
model type in this respect. The residuals plotted in
figure 17 have a standard deviation of 4.12 mm
(4.12x10 "3 m). Since this represents the amplitude of
the noise driving the model (see equation 1), it follows
that any noise-like behavior in the generated SA
waveforms will be negligible. This is verified in figure
18 which shows the smooth waveform of the generated
SA over a short time interval.

MODEL IDENTIFICATION RESULTS

Having derived ten models for SA, the question which
poses itself is: Which one do I use? Ideally, one would
like to use a single model to generate the SA from all
satellites. Multiple SA waveforms corresponding to
different satellites could then be generated simply by
driving the model with multiple Gaussian white noise
sequences. It is therefore necessary to compare the
models and the collected data to determine if any

equivalence exists. If the collected data share similar
PSD's and their corresponding models are similar, then
a single SA model is feasible.

As mentioned in the previous section, models with
either 9 or 11 coefficients were derived from the
collected SA data. For the purposes of comparison,
llth order models were derived for those data sets

initially giving rise to 9th order models. Although,
strictly speaking, this violates the Principle of
Parsimony, the additional complexity of having two
more coefficients is negligible.

Although they will not be listed here in their entirety,
a comparison of the coefficients for the ten models
would seem to indicate little similarity. However,

examination of their corresponding pole plots provides
more insight. An example is given in figure 19 where
the poles of two models are plotted. The models were
derived from the data sets of SM 28 and SV 25. The

ellipses around the poles indicate the two-sigma
confidence regions. Notice that for all of the poles the
confidence regions of the two models either overlap or
are in close proximity to each other. Admittedly, this
is not a strict statistical proof of model equivalence
(for that, a multivariate analysis of variance hypothesis
test is required; see Kelly (1992)). However, it is at
least an indication of model similarity.

Pole-plot comparisons were performed with all of the
models. Five were found to be similar. These five
were the models derived from SV's 28, 25, 19, 16 and
15. The similarity was verified through comparison of
the PSD's of collected and generated SA waveforms.
Since the five models are similar, any one of them can
be chosen and used as the SA modeL The coefficients
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for the model derived from the SV 28 data will be
listed here:

a(1) =-1.36192741558063
a(2) = .0.15866710938728
a(3) = +0.13545921610672
a(4) = +0.21501267664869

a(5) = +0.30061078095966
a(6) = .0.12390183286070
a(7) = +0.10063573000351
a(8) = +0.02694677520401
a(9) = .0.12898590228866
a(lO) = +0.05083106570666
a(ll) = .0.05600186282898

a2= 1.6993x 104 (meters 2)

ae2 is the variance of the Gaussian white holm input_
The seemingly excessive amount of significantfigures
is required to ensure filter stability. Note filfigure 19
that three out of the eleven poles are extremely close
to the unit circle. Truncation of the coefficients can

cause these poles to move outside the unit circle
yielding instability. It is thus very important that the
significant figures be maintained. Towards this end, it
is suggested that double-precision arithmetic be
employed in the generation of SA waveforms using this
model.

The distribution of these poles makes sense from the
point of view of filter theory. The three poles grouped
near the unit circle and the real axis represent a type
of low-pass filter with an extremely narrow bandwidth.
This is necessary since the input to the filter is wide-
band noise and the output is extremely m0w.band
SA. Although the low fi'equency components_ominate
the SA waveform, higher frequencies are present also
and the other poles of the model contribute to these
components.

StaUonarity

As wasmentioned ¢arUer._me of the coll¢,aed data
records had to be truncated in order to achieve
stationarity. A random proo_s is said to be stationary
ff its statistics do not change with time. Unfortunately,
some of the original collected SA records did exhibit
non-stationary behavior. Another way of viewing this
is to assume that SA is truly generated by a time series
model but thatthe coefficients change as a functionof
time. Powerful as they are, the vast majority of model
identification techniques assume a stationary data
record. Non-stationary records are typically examined
by segmenting the data into stationary sections and
identifying a model for each one separately. The non-
stationarybehavior of the data then can be determined
by examining the change in the models fi'om segment



to segment [Marple, 1987].

Having SA with this kind of behavior makes sense, at
least from a security point of view. A non-stationary

random process is much harder to "crack" than a
stationary, one. It should be pointed out, however, that
the collected data did exhibit stationarity for periods of

up to one and a half hours. Since this was the
maximum data collection period, no conclusions can be
made for longer periods. Future data collection efforts

are being planned to examine this phenomenon more
closely. In the mean time, the SA models derived from
the data are good approximations to the truth.

CONCLUSIONS AND RECOMMENDATIONS

Simulations are often necessary in the process of

development and testing of GPS-based systems. For
those users of GPS not having the benefits of DGPS

corrections, SA represents the dominant source of
error. For would-be developers of DGPS systems, SA
dictates the trade-off between the update rate (of the

differential corrections) and system accuracy.
Simulations therefore must account for SA. In this

paper, the issue of SA analysis and modeling has been
revisited. Using post-processed, precise ephemeris

data, a technique has been described whereby the clock
and orbital components of SA can be identified
separately. For the data collected for this paper, the

orbital component of SA seems not to have been
implemented.

SA data (clock component) has been collected from
over half of the current Block II satellites and a robust

model has been derived. The model has been
demonstrated to be accurate and robust. It is

suggested that this model be implemented in GPS

receiver test equipment and in GPS-based system
simulations. Since the model is capable of generating

virtually unlimited amounts of data, the design and test
engineers need not be constrained to a few collected
wave forms.
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